The Perfect Enemy | A disturbed balance between blood complement protective factors (FH, ApoE) and common pathway effectors (C5a, TCC) in acute COVID-19 and during convalesce | Scientific Reports
July 16, 2025

A disturbed balance between blood complement protective factors (FH, ApoE) and common pathway effectors (C5a, TCC) in acute COVID-19 and during convalesce | Scientific Reports

A disturbed balance between blood complement protective factors (FH, ApoE) and common pathway effectors (C5a, TCC) in acute COVID-19 and during convalesce | Scientific Reports  Nature.comView Full Coverage on Google News

A disturbed balance between blood complement protective factors (FH, ApoE) and common pathway effectors (C5a, TCC) in acute COVID-19 and during convalesce | Scientific Reports
A disturbed balance between blood complement protective factors (FH, ApoE) and common pathway effectors (C5a, TCC) in acute COVID-19 and during convalesce | Scientific Reports
  • Rendeiro, A. F. et al. Profiling of immune dysfunction in COVID-19 patients allows early prediction of disease progression. Life Sci. Alliance 4. https://doi.org/10.26508/lsa.202000955 (2021).

  • Chevrier, S. et al. A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep. Med. 2, 100166. https://doi.org/10.1016/j.xcrm.2020.100166 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 395, 1054–1062. https://doi.org/10.1016/s0140-6736(20)30566-3 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Reyes Gil, M. et al. Correlation of coagulation parameters with clinical outcomes during the coronavirus-19 surge in New York: Observational cohort. Front. Physiol. 12, 618929. https://doi.org/10.3389/fphys.2021.618929 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Posch, W. et al. C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia. J. Allergy Clin. Immunol. 147, 2083-2097.e2086. https://doi.org/10.1016/j.jaci.2021.03.038 (2021).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Holter, J. C. et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc. Natl. Acad. Sci. U.S.A. 117, 25018–25025. https://doi.org/10.1073/pnas.2010540117 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Yan, B. et al. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci. Immunol. 6. https://doi.org/10.1126/sciimmunol.abg0833 (2021).

  • Rawish, E., Sauter, M., Sauter, R., Nording, H. & Langer, H. F. Complement, inflammation and thrombosis. Br. J. Pharmacol. 178, 2892–2904. https://doi.org/10.1111/bph.15476 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Skerka, C. et al. Factor H-related protein 1: A complement regulatory protein and guardian of necrotic-type surfaces. Br. J. Pharmacol. 178, 2823–2831. https://doi.org/10.1111/bph.15290 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Parente, R., Clark, S. J., Inforzato, A. & Day, A. J. Complement factor H in host defense and immune evasion. Cell. Mol. Life Sci. 74, 1605–1624. https://doi.org/10.1007/s00018-016-2418-4 (2017).

    CAS  Article  PubMed  Google Scholar 

  • Page, E. M. & Ariëns, R. A. S. Mechanisms of thrombosis and cardiovascular complications in COVID-19. Thromb. Res. 200, 1–8. https://doi.org/10.1016/j.thromres.2021.01.005 (2021).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2007575 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Noris, M., Benigni, A. & Remuzzi, G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 98, 314–322. https://doi.org/10.1016/j.kint.2020.05.013 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kang, Y.-H., Tan, L. A., Carroll, M. V., Gentle, M. E. & Sim, R. B. Target pattern recognition by complement proteins of the classical and alternative pathways. Target Pattern Recognit. Innate Immun. 117–128 (2009).

  • Unnewehr, H. et al. Changes and regulation of the C5a receptor on neutrophils during septic shock in humans. J. Immunol. 190, 4215–4225. https://doi.org/10.4049/jimmunol.1200534 (2013).

    CAS  Article  PubMed  Google Scholar 

  • Gaca, J. G. et al. Effect of an anti-C5a monoclonal antibody indicates a prominent role for anaphylatoxin in pulmonary xenograft dysfunction. Transplantation 81, 1686–1694. https://doi.org/10.1097/01.tp.0000226063.36325.02 (2006).

    CAS  Article  PubMed  Google Scholar 

  • Xie, C. B., Jane-Wit, D. & Pober, J. S. Complement membrane attack complex: New roles, mechanisms of action, and therapeutic targets. Am. J. Pathol. 190, 1138–1150. https://doi.org/10.1016/j.ajpath.2020.02.006 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wu, C. P. et al. A meta-analysis. Front. Med. (Lausanne) 8(603558), 2021. https://doi.org/10.3389/fmed.2021.603558 (2019).

    Article  Google Scholar 

  • Hotchkiss, R. S. et al. Sepsis and septic shock. Nat. Rev. Dis. Primers. 2, 16045. https://doi.org/10.1038/nrdp.2016.45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, L. et al. Pentraxin 3 recruits complement factor H to protect against oxidative stress-induced complement and inflammasome overactivation. J. Pathol. 240, 495–506. https://doi.org/10.1002/path.4811 (2016).

    CAS  Article  PubMed  Google Scholar 

  • Martin, M. & Blom, A. M. Complement in removal of the dead—balancing inflammation. Immunol. Rev. 274, 218–232. https://doi.org/10.1111/imr.12462 (2016).

    CAS  Article  PubMed  Google Scholar 

  • Lipcsey, M. et al. The outcome of critically Ill COVID-19 patients is linked to thromboinflammation dominated by the kallikrein/kinin system. Front. Immunol. 12, 627579. https://doi.org/10.3389/fimmu.2021.627579 (2021).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sjöberg, A., Onnerfjord, P., Mörgelin, M., Heinegård, D. & Blom, A. M. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J. Biol. Chem. 280, 32301–32308. https://doi.org/10.1074/jbc.M504828200 (2005).

    CAS  Article  PubMed  Google Scholar 

  • Trouw, L. A. et al. C4b-binding protein and factor H compensate for the loss of membrane-bound complement inhibitors to protect apoptotic cells against excessive complement attack. J. Biol. Chem. 282, 28540–28548. https://doi.org/10.1074/jbc.M704354200 (2007).

    CAS  Article  PubMed  Google Scholar 

  • Leffler, J. et al. Annexin-II, DNA, and histones serve as factor H ligands on the surface of apoptotic cells. J. Biol. Chem. 285, 3766–3776. https://doi.org/10.1074/jbc.M109.045427 (2010).

    CAS  Article  PubMed  Google Scholar 

  • Alic, L. et al. A genome-wide association study identifies key modulators of complement factor H binding to malondialdehyde-epitopes. Proc. Natl. Acad. Sci. USA. 117, 9942–9951. https://doi.org/10.1073/pnas.1913970117 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kárpáti, É. et al. Interaction of the factor H family proteins FHR-1 and FHR-5 with DNA and dead cells: implications for the regulation of complement activation and opsonization. Front. Immunol. 11, 1297. https://doi.org/10.3389/fimmu.2020.01297 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sjöberg, A. P. et al. The factor H variant associated with age-related macular degeneration (His-384) and the non-disease-associated form bind differentially to C-reactive protein, fibromodulin, DNA, and necrotic cells. J. Biol. Chem. 282, 10894–10900. https://doi.org/10.1074/jbc.M610256200 (2007).

    CAS  Article  PubMed  Google Scholar 

  • Kang, Y. H., Urban, B. C., Sim, R. B. & Kishore, U. Human complement Factor H modulates C1q-mediated phagocytosis of apoptotic cells. Immunobiology 217, 455–464. https://doi.org/10.1016/j.imbio.2011.10.008 (2012).

    CAS  Article  PubMed  Google Scholar 

  • Yalcin Kehribar, D. et al. The receptor for advanced glycation end product (RAGE) pathway in COVID-19. Biomark. Biochem. Indicators Exposure Response Suscept. Chem. 26, 114–118. https://doi.org/10.1080/1354750x.2020.1861099 (2021).

  • Andersson, U. & Tracey, K. J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 29, 139–162. https://doi.org/10.1146/annurev-immunol-030409-101323 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Huang, W., Tang, Y. & Li, L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 51, 119–126. https://doi.org/10.1016/j.cyto.2010.02.021 (2010).

    CAS  Article  PubMed  Google Scholar 

  • Olivar, R. et al. The complement inhibitor factor H generates an anti-inflammatory and tolerogenic state in monocyte-derived dendritic cells. J. Immunol. 196, 4274–4290. https://doi.org/10.4049/jimmunol.1500455 (2016).

    CAS  Article  PubMed  Google Scholar 

  • Smolag, K. I. et al. Complement inhibitor factor H expressed by breast cancer cells differentiates CD14(+) human monocytes into immunosuppressive macrophages. Oncoimmunology 9, 1731135. https://doi.org/10.1080/2162402x.2020.1731135 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Pilling, D., Galvis-Carvajal, E., Karhadkar, T. R., Cox, N. & Gomer, R. H. Monocyte differentiation and macrophage priming are regulated differentially by pentraxins and their ligands. BMC Immunol. 18, 30. https://doi.org/10.1186/s12865-017-0214-z (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Laine, M. et al. Y402H polymorphism of complement factor H affects binding affinity to C-reactive protein. J. Immunol. 178, 3831–3836. https://doi.org/10.4049/jimmunol.178.6.3831 (2007).

    CAS  Article  PubMed  Google Scholar 

  • Stravalaci, M. et al. Control of complement activation by the long pentraxin PTX3: Implications in age-related macular degeneration. Front. Pharmacol. 11, 591908. https://doi.org/10.3389/fphar.2020.591908 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Vogt, L. M. et al. Apolipoprotein E triggers complement activation in joint synovial fluid of rheumatoid arthritis patients by binding C1q. J. Immunol. 204, 2779–2790. https://doi.org/10.4049/jimmunol.1900372 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Soto, I. et al. APOE stabilization by exercise prevents aging neurovascular dysfunction and complement induction. PLoS Biol. 13, e1002279. https://doi.org/10.1371/journal.pbio.1002279 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Klos, K. et al. APOE/C1/C4/C2 hepatic control region polymorphism influences plasma apoE and LDL cholesterol levels. Hum. Mol. Genet. 17, 2039–2046. https://doi.org/10.1093/hmg/ddn101 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nissilä, E. et al. Complement factor H and Apolipoprotein E participate in regulation of inflammation in THP-1 macrophages. Front. Immunol. 9, 2701. https://doi.org/10.3389/fimmu.2018.02701 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Garner, B., Mellor, H. R., Butters, T. D., Dwek, R. A. & Platt, F. M. Modulation of THP-1 macrophage and cholesterol-loaded foam cell apolipoprotein E levels by glycosphingolipids. Biochem. Biophys. Res. Commun. 290, 1361–1367. https://doi.org/10.1006/bbrc.2002.6356 (2002).

    CAS  Article  PubMed  Google Scholar 

  • Pogue, A. I. et al. Characterization of an NF-kappaB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J. Inorg. Biochem. 103, 1591–1595. https://doi.org/10.1016/j.jinorgbio.2009.05.012 (2009).

    CAS  Article  PubMed  Google Scholar 

  • Ma, L. et al. Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. bioRxiv. https://doi.org/10.1101/2021.02.22.432177 (2021).

  • Brasen, C. L. et al. Daily monitoring of viral load measured as SARS-CoV-2 antigen and RNA in blood, IL-6, CRP and complement C3d predicts outcome in patients hospitalized with COVID-19. Clin. Chem. Lab. Med. https://doi.org/10.1515/cclm-2021-0694 (2021).

    Article  PubMed  Google Scholar 

  • Gratz, J. et al. Risk of clinically relevant venous thromboembolism in critically ill patients with COVID-19: A systematic review and meta-analysis. Front. Med. (Lausanne) 8, 647917. https://doi.org/10.3389/fmed.2021.647917 (2021).

  • Nannoni, S., de Groot, R., Bell, S. & Markus, H. S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke 16, 137–149. https://doi.org/10.1177/1747493020972922 (2021).

    Article  PubMed  Google Scholar 

  • McGonagle, D., Bridgewood, C., Ramanan, A. V., Meaney, J. F. M. & Watad, A. COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol 3, e224–e233. https://doi.org/10.1016/s2665-9913(20)30420-3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitiello, A., La Porta, R., D’Aiuto, V. & Ferrara, F. Pharmacological approach for the reduction of inflammatory and prothrombotic hyperactive state in COVID-19 positive patients by acting on complement cascade. Hum. Immunol. https://doi.org/10.1016/j.humimm.2021.01.007 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y. et al. Complement inhibition ameliorates blast-induced acute lung injury in rats: Potential role of complement in intracellular HMGB1-mediated inflammation. PLoS ONE 13, e0202594. https://doi.org/10.1371/journal.pone.0202594 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ye, Z. et al. Efficacy and safety of corticosteroids in COVID-19 based on evidence for COVID-19, other coronavirus infections, influenza, community-acquired pneumonia and acute respiratory distress syndrome: A systematic review and meta-analysis. CMAJ 192, E756–E767. https://doi.org/10.1503/cmaj.200645 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Prescott, H. C. & Rice, T. W. Corticosteroids in COVID-19 ARDS: Evidence and hope during the pandemic. JAMA 324, 1292–1295. https://doi.org/10.1001/jama.2020.16747 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Kolilekas, L. et al. Can steroids reverse the severe COVID-19 induced “cytokine storm”?. J. Med. Virol. 92, 2866–2869. https://doi.org/10.1002/jmv.26165 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Roback, J. D. & Guarner, J. Convalescent plasma to treat COVID-19: Possibilities and challenges. JAMA 323, 1561–1562. https://doi.org/10.1001/jama.2020.4940 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Aviani, J. K., Halim, D., Soeroto, A. Y., Achmad, T. H. & Djuwantono, T. C. (COVID-19) treatment: A systematic review and meta-analysis based on recent studies and previous respiratory pandemics. Rev. Med. Virol. https://doi.org/10.1002/rmv.2225 (2019).

    Article  Google Scholar 

  • Ng, K. K., Ng, M. K., Zhyvotovska, A., Singh, S. & Shevde, K. Acute respiratory failure secondary to COVID-19 viral pneumonia managed with hydroxychloroquine/azithromycin treatment. Cureus 12, e8268. https://doi.org/10.7759/cureus.8268 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, A. K., Singh, A., Singh, R. & Misra, A. Remdesivir in COVID-19: A critical review of pharmacology, pre-clinical and clinical studies. Diabetes Metabol. Syndrome 14, 641–648. https://doi.org/10.1016/j.dsx.2020.05.018 (2020).

    Article  Google Scholar 

  • Beigel, J. H. et al. Remdesivir for the treatment of Covid-19—final report. N. Engl. J. Med. 383, 1813–1826. https://doi.org/10.1056/NEJMoa2007764 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Acosta-Ampudia, Y. et al. COVID-19 convalescent plasma composition and immunological effects in severe patients. J. Autoimmun. 118, 102598. https://doi.org/10.1016/j.jaut.2021.102598 (2021).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Barie, P. S., Hydo, L. J. & Fischer, E. Comparison of APACHE II and III scoring systems for mortality prediction in critical surgical illness. Arch. Surg. 130, 77–82 (1995).

    CAS  Article  Google Scholar 

  • Buntinx, F. et al. Evaluation of Charlson’s comorbidity index in elderly living in nursing homes. J. Clin. Epidemiol. 55, 1144–1147 (2002).

    CAS  Article  Google Scholar 

  • Peres Bota, D., Melot, C., Lopes Ferreira, F., Nguyen Ba, V. & Vincent, J. L. The Multiple Organ Dysfunction Score (MODS) versus the Sequential Organ Failure Assessment (SOFA) score in outcome prediction. Intensive Care Med. 28, 1619–1624 (2002).

  • Cuenca, A. G. et al. The Glue Grant experience: Characterizing the post injury genomic response. Eur. J. Trauma Emerg. Surg. 37, 549–558. https://doi.org/10.1007/s00068-011-0148-8 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Venkataraman, R. & Kellum, J. A. Defining acute renal failure: The RIFLE criteria. J. Intensive Care Med. 22, 187–193. https://doi.org/10.1177/0885066607299510 (2007).

    Article  PubMed  Google Scholar 

  • Cavalcanti, A. B. et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate covid-19. N. Engl. J. Med. 383, 2041–2052. https://doi.org/10.1056/NEJMoa2019014 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Remy, K. E. et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight 5, 1–15. https://doi.org/10.1172/jci.insight.140329 (2020).

    Article  Google Scholar 

  • Coopersmith, C. M. et al. Surviving sepsis campaign: Research priorities for sepsis and septic shock. Crit. Care Med. 46, 1334–1356. https://doi.org/10.1097/ccm.0000000000003225 (2018).

    Article  PubMed  Google Scholar 

  • Coopersmith, C. M. et al. The surviving sepsis campaign: Research priorities for coronavirus disease 2019 in critical illness. Crit. Care Med. 49, 598–622. https://doi.org/10.1097/ccm.0000000000004895 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Torres Rives, B. et al. Serum immunoglobulin levels, complement components 3 and 4, HLA-B27 allele and spondyloarthropathy in patients with non-infectious anterior uveites. Reumatol. Clin. https://doi.org/10.1016/j.reuma.2020.07.007 (2020).

    Article  PubMed  Google Scholar 

  • Wang, R., Xiao, H., Guo, R., Li, Y. & Shen, B. The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg. Microbes Infect. 4, e28. https://doi.org/10.1038/emi.2015.28 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Loftus, T. J. et al. Overlapping but disparate inflammatory and immunosuppressive responses to SARS-CoV-2 and bacterial sepsis: An immunological time course analysis. Front. Immunol. 12, 792448. https://doi.org/10.3389/fimmu.2021.792448 (2021).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tomazini, B. M. et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. JAMA 324, 1307–1316. https://doi.org/10.1001/jama.2020.17021 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Villar, J. et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir. Med. 8, 267–276. https://doi.org/10.1016/s2213-2600(19)30417-5 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M. & Teixeira, M. M. Resolution of inflammation: What controls its onset?. Front. Immunol. 7, 160. https://doi.org/10.3389/fimmu.2016.00160 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sallenave, J. M. & Guillot, L. Innate immune signaling and proteolytic pathways in the resolution or exacerbation of SARS-CoV-2 in Covid-19: Key therapeutic targets?. Front Immunol. 11, 1229. https://doi.org/10.3389/fimmu.2020.01229 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar