The Perfect Enemy | Risk factors for severe COVID-19 differ by age for hospitalized adults | Scientific Reports - Nature.com
July 14, 2025

Risk factors for severe COVID-19 differ by age for hospitalized adults | Scientific Reports – Nature.com

Risk factors for severe COVID-19 differ by age for hospitalized adults | Scientific Reports  Nature.comView Full Coverage on Google News

Risk factors for severe COVID-19 differ by age for hospitalized adults | Scientific Reports – Nature.com
Risk factors for severe COVID-19 differ by age for hospitalized adults | Scientific Reports – Nature.com
  • WHO Coronavirus Disease (COVID-19) Dashboard at https://covid19.who.int. Accessed 10 Dec 2021.

  • Bohn, M. K. et al. Pathophysiology of COVID-19: Mechanisms underlying disease severity and progression. Physiology 35, 288–301 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Joost Wiersinga, W., Rhodes, A., Cheng, A. C., Peacock, S. J. & Prescott, H. C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA 324, 782–793 (2020).

    Article  PubMed  Google Scholar 

  • Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 395, 1054–1062 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kim, L. et al. Risk factors for intensive care unit admission and in-hospital mortality among hospitalized adults identified through the us coronavirus disease 2019 (COVID-19)-associated hospitalization surveillance network (COVID-NET). Clin. Infect. Dis. 72, e206–e214 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Gao, Y.-D. et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 76, 428–455 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Farshbafnadi, M., Kamali Zonouzi, S., Sabahi, M., Dolatshahi, M. & Aarabi, M. H. Aging & COVID-19 susceptibility, disease severity, and clinical outcomes: The role of entangled risk factors. Exp. Gerontol. 154, 111507 (2021).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bae, S., Kim, S. R., Kim, M.-N., Shim, W. J. & Park, S.-M. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: a systematic review and meta-analysis. Heart 107, 373–380 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Goodman, K. E., Magder, L. S., Baghdadi, J. D., Pineles, L., Levine, A. R., Perencevich, E. N. & Harris, A. D. Impact of Sex and Metabolic Comorbidities on Coronavirus Disease 2019 (COVID-19) Mortality Risk Across Age Groups: 66 646 Inpatients Across 613 U.S. Hospitals. Clin. Infect. Dis. 73, e4113–e4123 (2021).

  • Burki, T. K. Lifting of COVID-19 restrictions in the UK and the Delta variant. Lancet Respir Med 9, e85 (2021).

  • Marcos, M., Belhassen-García, M., Sánchez-Puente, A., Sampedro-Gomez, J., Azibeiro, R., Dorado-Díaz, P.-I., Marcano-Millán, E., García-Vidal, C., Moreiro-Barroso, M.-T., Cubino-Bóveda, N., Pérez-García, M.-L., Rodríguez-Alonso, B., Encinas-Sánchez, D., Peña-Balbuena, S., Sobejano-Fuertes, E., Inés, S., Carbonell, C., López-Parra, M., Andrade-Meira, F., López-Bernús, A., Lorenzo, C., Carpio, A., Polo-San-Ricardo, D., Sánchez-Hernández, M.-V., Borrás, R., Sagredo-Meneses, V., Sanchez, P.-L., Soriano, A. & Martín-Oterino, J.-Á. Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients. PLoS One 16, e0240200 (2021).

  • Lombardi, Y. et al. External validation of prognostic scores for COVID-19: a multicenter cohort study of patients hospitalized in Greater Paris University Hospitals. Intensive Care Med. 47(12), 1426–1439 (2021).

    CAS  Article  PubMed  Google Scholar 

  • King, J. T. Jr. et al. Accuracy of the Veterans Health Administration COVID-19 (VACO) Index for predicting short-term mortality among 1307 US academic medical centre inpatients and 427 224 US Medicare patients. J. Epidemiol. Commun. Health 76(3), 254–260 (2021).

    Article  Google Scholar 

  • Rinderknecht, M. D. & Klopfenstein, Y. Predicting critical state after COVID-19 diagnosis: Model development using a large US electronic health record dataset. NPJ Digit Med 4, 113 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadaw, A. S. et al. Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. Lancet Digit Health 2, e516–e525 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson, C. J., Wooster, L., Sigurslid, H. H., Li, R. H., Jiang, W., Tian, W., Lino Cardenas, C. L. & Malhotra, R. Estimating risk of mechanical ventilation and in-hospital mortality among adult COVID-19 patients admitted to Mass General Brigham: The VICE and DICE scores. EClinicalMedicine 33, 100765 (2021).

  • Knight, S. R., Ho, A., Pius, R., Buchan, I., Carson, G., Drake, T. M., Dunning, J., Fairfield, C. J., Gamble, C., Green, C. A., Gupta, R., Halpin, S., Hardwick, H. E., Holden, K. A., Horby, P. W., Jackson, C., Mclean, K. A., Merson, L., Nguyen-Van-Tam, J. S., Norman, L., Noursadeghi, M., Olliaro, P. L., Pritchard, M. G., Russell, C. D., Shaw, C. A., Sheikh, A., Solomon, T., Sudlow, C., Swann, O. V., Turtle, L. C. W., Openshaw, P. J. M., Kenneth Baillie, J., Semple, M. G., Docherty, A. B. & Harrison, E. M. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ 370, (2020).

  • Chen, Z. et al. A risk score based on baseline risk factors for predicting mortality in COVID-19 patients. Curr. Med. Res. Opin. 37, 917–927 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Garcia-Gordillo, J. A., Camiro-Zúñiga, A., Aguilar-Soto, M., Cuenca, D., Cadena-Fernández, A., Khouri, L. S., Rayek, J. N., Mercado, M. & ARMII Study Group. COVID-IRS: A novel predictive score for risk of invasive mechanical ventilation in patients with COVID-19. PLoS One 16, e0248357 (2021).

  • Gong, J. et al. A tool for early prediction of severe coronavirus disease 2019 (COVID-19): A multicenter study using the risk Nomogram in Wuhan and Guangdong China. Clin. Infect. Dis. 71, 833–840 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Ahmad, M. A., Eckert, C. & Teredesai, A. Interpretable Machine Learning in Healthcare. in Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics 559–560 (Association for Computing Machinery, 2018).

  • Coronavirus, N. WHO R&D Blueprint. https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf. Accessed 10 January 2021.

  • Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 40, 373–383 (1987).

    CAS  Article  PubMed  Google Scholar 

  • Lee, J. Y., Molani, S., Fang, C., Jade, K., Kornilov, S. A., Mico, L. T., O’mahony, S. & Hadlock, J. J. Ambulatory risk models for the long-term prevention of sepsis: Retrospective study. JMIR Med Inform 9, e29986 (2021).

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. & Others. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

  • Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

    CAS  Article  PubMed  Google Scholar 

  • Boyd, K., Eng, K. H. & Page, C. D. Area under the precision-recall curve: Point estimates and confidence intervals. in Machine Learning and Knowledge Discovery in Databases 451–466 (Springer Berlin Heidelberg, 2013).

  • Rodríguez-Pérez, R. & Bajorath, J. Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values. J. Med. Chem. 63, 8761–8777 (2020).

    Article  PubMed  Google Scholar 

  • Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. M. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Ann. Intern. Med. 162, 55–63 (2015).

    Article  PubMed  Google Scholar 

  • Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).

    MathSciNet  Article  Google Scholar 

  • Bhasin, A. et al. Is BMI higher in younger patients with COVID-19? association between BMI and COVID-19 hospitalization by age. Obesity 28, 1811–1814 (2020).

    CAS  Article  PubMed  Google Scholar 

  • di Filippo, L., Doga, M., Frara, S. & Giustina, A. Hypocalcemia in COVID-19: Prevalence, clinical significance and therapeutic implications. Rev. Endocr. Metab. Disord  (2021).

  • Zingmond, D. S. et al. Improving hospital reporting of patient race and ethnicity-approaches to data auditing. Health Serv. Res. 50(Suppl 1), 1372–1389 (2015).

    Article  PubMed  PubMed Central  Google Scholar